Abstract

AbstractThe shaped hole is the significant advancement for improving film cooling that has been practically achieved. This present study puts forward a new design combining the vortex generator (VG) with the shaped hole (FV). To investigate the effect of the new design, experiments were carried out to measure the film cooling performance of the four different configurations including the baseline cylindrical hole (CH) model, the model combing the cylindrical hole with VG (CV), shaped hole model (FAN), and FV model, at the blowing ratio varying at M = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 by the infrared camera. Experimental results show that the FV model performs the best among the four models at each blowing ratio. The FV model could improve the area-averaged film effectiveness at most 25.5% than that of the CH model at M = 2.0. Moreover, the FV model could improve the area-averaged film cooling effectiveness at most 431% than that of the CH model at M = 3.0. Besides, the aerodynamic analysis of the four models at different blowing ratios was carried out by the numerical study. The simulation results show that the introduction of VG causes slightly more aerodynamic loss while the fan-shaped hole improves it. The aerodynamic performance of the FV model is almost the same as the CH model when M < 2 and smaller than that of the CH model when M > 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.