Abstract

Experimental and numerical investigations of the centrifugal pump performance at non-cavitating and cavitating flow conditions were carried out in the present study. Experiments were performed by applying a vacuum to a closed-loop system to investigate the effects of the net positive suction head available (NPSHa), flow rate, water temperature and pump speed on the centrifugal pump performance. Accordingly, many of the important parameters concerning cavitation phenomenon were calculated. Also, the noise which is accompanied by cavitation was measured. Numerical analysis was implemented for two phase flow (the water and its vapor) using a 2-D simulation by ANSYS FLUENT software to investigate the internal flow of centrifugal pump under cavitating conditions. It was observed that with decreasing NPSHa, the values of the pump head, flow rate and efficiency initially remain constant, but with further reduction in NPSHa these parameters will decrease. Also, it was found that at 3% head drop the percentage drop of the flow rate is less than 2% whereas the percentage drop of the efficiency is greater than 3%. Numerically, it was noticed that the cavitation regions appear at the leading edge of suction side of the impeller blades which represents the lowest pressure area inside the computational domain of the centrifugal pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.