Abstract
With the influence of intense solar radiation heat and the greater temperature difference between day and night, surface concrete with a drastic temperature change can easily experience a great nonlinear temperature difference, which increases the risk of early-age concrete cracking. In this study, a distributed optical fiber temperature sensing (DTS) system is used to monitor the surface temperature gradient of concrete in real time, and a solar radiation heat monitoring test is also carried out based on the Baihetan project. Based on this, a solar radiation loading model and a finite element model of a typical pouring block considering solar radiation are established. Combined with the measured temperature data and different calculation conditions, the surface temperature changes of medium-heat and low-heat concrete experiencing solar radiation are analyzed, and the temperature control effect of surface concrete with different surface insulation measures is further analyzed. The results show that the temperature variation of medium-heat concrete at the same depth is more obvious than that of low-heat concrete. Additionally, the temperature variation of low-heat concrete is noticeable within 20 cm of the top surface. In addition, in an intense solar radiation environment, covering the concrete with a 4- or 5-centimeter-thick polyethylene coil can effectively control the surface temperature gradient and maximum daily amplitude of low-heat concrete, and surface concrete cured by running water has a significant temperature control effect. Therefore, it is suggested that 22–24 °C water temperatures be used for water curing during periods of intense solar radiation during the day and a 4-centimeter-thick polyethylene coil be used for coverage at night. These study results have been employed in the Baihetan project to optimize the temperature control scheme of the pouring blocks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have