Abstract
This study deals with the experimental and numerical reverse re-drawing of cylindrical cups. Experiments were carried out on a classical tensile test machine of maximum load 100 kN. Experimental data consist of force–displacement curves of the punch and thickness distribution in the cup wall at 0°, 45° and 90° to the rolling direction (RD). The drawing process was simulated using both the dynamic explicit finite element code Pam-Stamp and the static implicit home code DD3IMP. Two extreme cases have been considered: a dynamic explicit calculation with shell elements, leading to low CPU times and a static implicit calculation with solid elements, which is CPU time-consuming. The accuracy of these numerical results, when compared to experimental ones, is then studied. Moreover, the occurrence of strain path changes during the first and the second stage is also investigated in order to estimate their influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.