Abstract

Abstract This paper aims at evaluating an elastoplastic constitutive model which accounts for combined isotropic-kinematic hardening for complex strain-path changes in a dual-phase steel, DP800. The capability of the model to reproduce the transient hardening phenomena under two-stage non-proportional loading has been assessed through numerical simulations of sequential uniaxial tension and notched tension/shear tests. Finite element simulations with shell elements were performed using the explicit non-linear FE code LS-DYNA. Numerical predictions of the stress–strain response were compared to the corresponding experimental data. The results from the experiments demonstrated that prior plastic deformation has certainly influenced the subsequent work-hardening behaviour of the material under biaxial or shear deformation modes. Furthermore, the numerical simulations from the two-stage uniaxial tension–notched tension and uniaxial tension–shear tests predicted the general trends of the experimental results such as transitory hardening and overall work hardening. However, some discrepancies were found in accurately describing the transient hardening behaviour subsequent to strain path changes between the experiments and numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.