Abstract

Various experimental studies have been carried out on glass fiber reinforced concrete (GFRC), but in limited studies, the behavior of this type of concrete is evaluated using finite element method (FEM). In this study an analysis model is presented for predicting energy absorption capacity of glass fiber reinforced self-compacting concrete (GFRCSCC) beams and the results are compared with experimental study. For this purpose, the investigations are conducted in two experimental and numerical sections. In experimental section, the characteristics of fresh and hardened concrete have been evaluated using slump flow, V-funnel, L-box, T50, compressive strength, tensile strength and flexural strength tests. In numerical section, ABAQUS software has been used to simulate GFRCSCC beams. The concrete damage plasticity model has been used to simulated concrete material. The fiber contents are 0, 0.25, 0.75 and 1% of the mixed concrete by volume. The results show that the maximum increase in energy absorption capacity of beams compared to the plain concrete for 25, 35 and 45 concrete grade was 29, 33.2 and 53.75%, respectively. At last, the ultimate loads corresponding to the FEM are found to hold good agreement with experimental ultimate loads which validates the FEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.