Abstract

An experimental facility of advanced packaging electroplating cell is developed to study the uniformity of the temperature and flow field in the high precision electroplating cell. Based on heat transfer and computational fluid dynamics, a 2D numerical model is founded to analyze the temperature field and flow field of the experimental electroplating cell enclosure. Combing with test and simulated results, the effects of the heat source intensity, ventilated mode and heat transfer coefficient on the thermal field of the cell are discussed. Under the condition of natural convection with temperature gradient driving, although heat/cold source intensity and ventilated mode both have effects on the temperature field and flow field of the electroplating enclosure, the heat/cold source is the more marked factor influencing the uniformity of temperature field and flow field. The experimental and simulated results can give a way to enhance the uniformity of the temperature field and flow field and to improve the quantity of the WL-CSP electroplating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.