Abstract

Cost, weight and size reduction constrained designers of power electronic for micro hybrid vehicle to use power MOSFET under extreme conditions like avalanche mode. This paper shows the influence of the solder voids onto the die temperature distribution of a specifically designed power MOSFET. In the first part of this paper, a methodology is presented to perform fast dynamic temperature measurements during MOSFET avalanche (400 A–80 μs). In the second part of the paper, a comparison between experimental results and finite elements electro-thermal simulation is shown for power MOSFET operating in high conduction mode (500 A–100 ms). Finally the correlated numerical model is used to evaluate the sensitivity to solder voids of the chip temperature distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.