Abstract

Natural rivers have several bends along the path that are not generally uniform and some are convergent. Installing the bridge piers in river convergent bends may result in complicated flow and erosion patterns around the bridge piers. Most of previous studies on the flow and the scour pattern around piers were carried out in straight channels and fixed-width bends. Studying the local scouring around pier located at a converging bend, experimentally and numerically, has brought novelty to this paper. In this research, a physical hydraulic model with a 90° convergent bend and central radius of 170 cm was built. A cylindrical pier with a diameter of 60 mm was installed in positions of 0, 30, 45, 60, and 75 degrees and local scour were studied under clear-water conditions. The SSIIM-2 numerical model was also used to simulate the scour pattern and the results were compared with experimental results. The results showed that, increasing the convergence and changing the pier position in a bend leads to an increment in the continuity between the flow lines and secondary currents, respectively, so that the maximum depth and volume of the scour hole occurred in the second half of the bend at an angle of 75 degrees. The comparison between experimental and numerical data shows that SSIIM-2 model can efficiently simulate the scour pattern in a 90° convergent bend. Furthermore, in all cases by increasing the Froude number, maximum depth and volume of the scour hole were increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call