Abstract

Abstract The appearance of an ice jam in a river crucially distorts local hydrodynamic conditions including water level, flow velocity, riverbed form and local scour processes. Laboratory experiments are used for the first time here to study ice-induced scour processes near a bridge pier. Results show that with an ice sheet cover the scour hole depth around a bridge is increased by about 10% compared to under equivalent open flow conditions. More dramatically, ice-jammed flows induce both greater scour depths and scour variability, with the maximum scour depth under an ice-jammed flow as much as 200% greater than under equivalent open flow conditions. Under an ice-jammed condition, both the maximum depth and length of scour holes around a bridge pier increase with the flow velocity while the maximum scour hole depth increases with ice-jam thickness. Also, quite naturally, the height of the resulting deposition dune downstream of a scour hole responds to flow velocity and ice jam thickness. Using the laboratory data under ice-jammed conditions, predictive relationships are derived between the flow’s Froude number and both the dimensionless maximum scour depth and the dimensionless maximum scour length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call