Abstract
Excessive roll amplitudes due to roll motion are undesirable in marine ships. Consequently, it is imperative to conduct a detailed analysis of roll motion and the associated roll damping characteristics. This study experimentally and numerically investigates the roll damping characteristics of bilge keels with various geometric shapes on a ship model under different roll amplitudes. By comparing the non-dimensional roll damping coefficients obtained from experiments and numerical analyses, it is observed that bilge keels with geometries differing from the conventional plate shape exhibit distinct roll damping coefficients. Specifically, bilge keels with sharper tip ends demonstrate higher roll damping coefficients. Based on these findings, it is recommended that the corners and tip end of bilge keels be sharpened to enhance the roll damping coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.