Abstract

In this paper an experimental and numerical study to investigate the convective heat transfer characteristics of fully developed turbulent flow of a water–Al2O3 nanofluid in a circular tube is presented. The numerical simulations are accomplished on the experimental test section configuration. In the analysis, the fluid flow and the thermal field are assumed axial-symmetric, two-dimensional, and steady state. The single-phase model is employed to model the nanofluid mixture and the k-ϵ model is used to describe the turbulent fluid flow. Experimental and numerical results are carried out for different volumetric flow rates and nanoparticles concentration values. Heat transfer convective coefficients as a function of flow rates and Reynolds numbers are presented. The results indicate that the heat transfer coefficients increase for all nanofluids concentrations compared to pure water at increasing volumetric flow rate. Heat transfer coefficient increases are observed at assigned volumetric flow rate for nanofluid mixture with higher concentrations, whereas Nusselt numbers present lower values than the ones for pure water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.