Abstract

Thermal and mechanical performance evaluations of sliding systems are required to avoid the failure of surfaces due to high temperature and a stress focus on a small contact area. This work investigates the thermal and tribological performance of an epoxy composite reinforced with zirconium diboride (ZrB2) and polytetrafluoroethylene (PTFE) particles. Three-dimensional thermal and mechanical finite-element models are used to study the heat generated (heat flux), the temperature field, the stresses, and the deformation of a pin-on-disc system during sliding. These finite-element (FE) results help to study the effect of the coefficient of friction, load, and sliding speed on the contact temperature and stress distribution, which in turn affect the wear. The contact temperature for the epoxy hybrid composite is decreased by 38.9 % due to the addition of fillers. When the load is incremented by 10 N, the contact temperature and stress increase by 25 % and 92 %, respectively. Accurate calculations of the heat generation and stress distribution are considered the key to predicting the sliding system’s performance, the wear characteristics, and the stability of the contacting surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.