Abstract

CO2 sequestration in deep saline aquifers is regard as the most promising option among all the CO2 storage technologies. Capillary pressure can influence the CO2 storage efficiency in the aquifers. The core-scale experimental and numerical simulation studies are usually used to understand the mechanism and degree of such influence. Based on both magnetic resonance imaging (MRI) technique and numerical simulation method, this study investigates the effect of capillary pressure on the CO2 displacement efficiency in water-saturated porous media especially in quantitative form. Our results indicate: (1) the magnitude of capillary pressure may significantly affect the CO2-water displacement efficiency, and the displacement efficiency declines with increasing capillary pressure; (2) Sensitivity of the numerical model to capillary pressure becomes more unobvious with increasing capillary pressure. Thus, an accurate capillary pressure parameter is particularly required for improving the reliability of the model predictions in the case of the high permeability porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.