Abstract

AbstractThe pore sizes of unconventional reservoir rock, such as shale and tight rock, are on the order of nanometers. The thermodynamic properties of in-situ hydrocarbon mixtures in such small pores are significantly different from those of fluids in bulk size, primarily due to effect of large capillary pressure. For example, it has been recognized that the phase envelop shifts and bubble-point pressure is suppressed in tight and shale oil reservoirs. On the other hand, the stress-dependency is pronounced in low permeability rocks. It has been observed that pore sizes, especially the sizes of pore-throats, are subject to decrease due to rock deformation induced by the fluid depletion from over-pressurized tight and shale reservoirs. This reduction on pore spaces again affects the capillary pressure and therefore thermodynamic properties of reservoir fluids. Thus it is necessary to model the effect of stress- dependent capillary pressure and rock deformation on tight and shale reservoirs.In this paper, we propose and develop a multiphase, multidimensional compositional reservoir model to capture the effect of large capillary pressure on flow and transport in stress-sensitive unconventional reservoirs. The vapor-liquid equilibrium (VLE) calculation is performed with Peng-Robinson Equation of State (EOS), including the impact of capillary pressure on phase behavior and thermodynamic properties. The fluid flow is fully coupled with geomechanical model, which is derived from the thermo- poro-elasticity theory; mean normal stress as the stress variable is solved simultaneously with mass conservation equations. The finite-volume based numerical method, integrated finite difference method, is used for space discretization for both mass conservation and stress equations. The formulations are solved fully implicitly to assure the stability.We use Eagle Ford tight oil formations as an example to demonstrate the effect of capillary pressure on VLE. It shows that the bubble-point pressure is suppressed within nano-pores, and fluid properties, such as oil density and viscosity, are influenced by the suppression due to more light components remained in liquid phase. In order to illustrate the effect of stress-dependent capillary pressure on tight oil flow and production, we perform numerical studies on Bakken tight oil reservoirs. The simulation results show that bubble-point suppression is exaggerated by effects of rock deformation, and capillary pressure on VLE also affects the reservoir pressure and effective stress. Therefore the interactive effects between capillary pressure and rock deformation are observed in numerical results. Finally, the production performance in the simulation examples demonstrates the large effect of large capillary pressure on estimated ultimate recovery (EUR) in stress-sensitive tight reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call