Abstract

In order to achieve the energy and efficiency goals in modern automotive press shops, press systems with increasingly high stroke rates are being implemented (Meinhardt in proceedings of ACI forming in car body engineering. Bad Nauheim, Germany 2012). As a side effect, the structural dynamic loads on the press and especially on the forming tool increase. Hence, to design reliable and withstanding forming tools, a detailed knowledge of the vibrations and resulting critical loads is essential. In this paper, the main focus is put on the vibration of the blankholder—the heaviest moving component in the forming tool. To predict those vibrations, a coupled multibody-finite element simulation (MBS-FEM) is conducted, which combines rigid and elastic modeling approaches. Also, an experimental validation of the blankholder vibration under operational load is carried out. To compare the numerical and experimental results—both in time and frequency domain—an 1/3-octave analysis of a blankholder’s vibrational speed is performed. The test measurements agree well with the MBS-FEM simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call