Abstract

This study presents an experimental and numerical investigation on a surface sliding discharge in a supersonic airflow in the presence of an oblique shock wave. In experiments, flow Mach numbers were 1.20–1.68 in the shock tube combined with the discharge chamber. A single high-voltage 25 kV pulse sustains the plasma; the discharge current has a duration of ~500 ns. A surface sliding discharge is developed as a localized channel in a zone of interaction of an oblique shock wave with a boundary layer on the upper wall of the discharge chamber. The discharge channel acts as a linear source of heat and is at the origin of the induced shock wave. The flow field in the discharge chamber is spatio-temporally surveyed using high-speed shadowgraphy imaging with a frequency of up to 525,000 frames per second. The experiments show that the perturbed flow restored the initial structure after more than 100 μs. Numerical simulation with local energy input into the supersonic flow in a flat channel is carried out on the base of unsteady two-dimensional Navier–Stokes equations. It is determined that the dynamics of an induced shock wave are dependent on the energy input regime and on the flow parameters. The thermal energy release in the discharge channel of 0.22–0.29 J was estimated from a comparison of experimental data and numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call