Abstract

Abstract Due to the complex flow field and the considerable heat load on the turbine blade tip, film cooling is essential to protect the tip from being overheated. In this paper, an experimental work was conducted to compare the film cooling distributions of four tip structures (cavity numbers are one, two, three, and four) with two film hole configurations (perpendicular and 45 degrees inclined to the cavity floor) under three coolant blowing ratios. By using pressure sensitive paint technique, the distributions of film cooling effectiveness were measured. Moreover, a computation with careful validation was executed to obtain the cooling traces in the tip region and compare the aerodynamic performance of these multi-cavity tips. The results showed that the value and uniformity of film cooling effectiveness were improved by the inclined configuration. The tip film cooling was enhanced when using the multi-cavity tips. The aerodynamic loss of the tested tips was compared as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.