7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.4028/www.scientific.net/msf.934.50
Copy DOIJournal: Materials Science Forum | Publication Date: Oct 15, 2018 |
Citations: 5 |
The aim of this study was to investigate the effect of replacing carbon black (CB) with inexpensive and environmentally friendly fillers – bentonite (BNT) and modified bentonite (M-BNT), on the curing properties of natural rubber (NR) composites. A control sample (unfilled NR) and thirteen NR composites filled with varied proportions of CB (x1), M-BNT (x2), and BNT (x3) based on a third degree – simplex lattice mixture design of experiment (DOE) were prepared in this study. Rheometric results showed that 33% substitution of CB with M-BNT provides the highest elastic torque values. Mixture of 10phr CB and 5phr M-BNT (CB/M-BNT/BNT 10/5/0) produces synergistic effect on curing. The presence of CB increases vulcanization rate due to its high basicity and low oxygen content while M-BNT serves as vulcanizing accelerator due to the present amine groups. Coefficients of reduced hierarchical models showed that the main factors contributed mainly on the curing parameters: β1 for the torque values, β2 for the scorch and curing time, and β3 for CRI. High values of coefficient of determination (r2) were computed particularly for MH (98.20%), ΔS (99.13%), ts2(95.68%), tc90(95.70%) and CRI (95.97%) establishing best fit between the model and experimental values.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.