Abstract

2-Amino-3-((E)-(9-p-tolyl-9H-carbazol-3-yl) methyleneamino) maleonitrile (ACMM) was synthesized and characterized by X-ray diffraction, FT-IR, FT-Raman and UV–Vis spectra. The X-ray diffraction study showed that ACMM has a Z-configuration, due to the intramolecular C18H18A⋯N2, N3H3A⋯N2 and C20H20A⋯N4 hydrogen bonds and intermolecular C10H10A⋯N4, N3H3B⋯N9 (2−x, 2−y, 2−z) and N3H8C⋯N4 (2−x, 1−y, 2−z) hydrogen bonds. The benzene ring including methyl is twisted from the mean plane of the carbazole group by 59.7(3)°. Vibrational spectra and electronic spectra measurements were made for the compound. Optimized geometrical structure and harmonic vibrational frequencies were computed with DFT (B3-based B3P86, B3LYP, B3PW91 and B-based BP86, BLYP, BPW91) methods and ab initio RHF method using 6-311++G(d, p) basis set. Assignments of the observed spectra were proposed. The equilibrium geometries computed by all of the methods were compared with X-ray diffraction results. The absorption spectra of the title compound were computed both in gas phase and in DMF solution using TD-B3LYP/6-311++G(d, p) and PCM-B3LYP/6-311++G(d, p) approaches, respectively. The calculated results provide a good description of positions of the bands maxima in the observed electronic spectrum. Temperature dependence of thermodynamic parameters in the range of 100–1000K were determined. The bond orbital occupancies, contribution from parent natural bond orbital (NBO), the natural atomic hybrids was calculated and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.