Abstract

3-(2,6-Dichlorobenzyl)-5-methyl-N-nitro-1,3,5-oxadiazinan-4-imine (DNOI) was synthesized and characterized by X-ray diffraction, FT-IR, FT-Raman and UV–Vis spectra. The X-ray diffraction study showed that DNOI has a one dimensional configuration, due to the intermolecular C9H⋯O1 and N4H⋯O2 hydrogen bonds. The benzene ring and the oxadiazine rings are tilted with respect to each other by 63.07° (C3N1C5C6). Vibrational spectra and electronic spectra measurements were made for the compound. Optimized geometrical structure and harmonic vibrational frequencies were computed with DFT (B3LYP, B3P86, and M062X) methods using 6-311++G(d,p) basis set. Assignments of the observed spectra were proposed. The equilibrium geometries computed by all of the methods were compared with X-ray diffraction results. The absorption spectra of the title compound were computed both in gas phase and in CH3OH solution using TD-B3LYP/6-311++G(d,p) and PCM-B3LYP/6-311++G(d,p) approaches, respectively. The calculated results provide a good description of positions of the bands maxima in the observed electronic spectrum. Temperature dependence of thermodynamic parameters in the range of 100–1000K were determined, entropy, heat capacity and enthalpy changes were increasing with temperature increasing, while for Gibbs free energy is decreasing with temperature increasing. The bond orbital occupancies, contribution from parent natural bond orbital (NBO), the natural atomic hybrids was calculated and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.