Abstract

Hydration of aluminum oxide anion clusters was studied in the gas phase using an ion trap secondary ion mass spectrometer. Hydration of both AlO2- and Al2O4H- occurred by the consecutive addition of two H2O molecules. For hydration of AlO2-, the rate constants for addition of the first and second water molecules are 4 × 10-11 and 4 × 10-10 cm3 molecule-1 s-1, respectively. The first and second hydration rate constants for Al2O4H- are 2 × 10-9 and 8 × 10-10 cm3 molecule-1 s-1, respectively. A comparison of the experimental rate constants to the theoretical rate constants reveals that addition of the first H2O to AlO2- is only 2% efficient, whereas addition of the first H2O to Al2O4H- is 100% efficient. Ab initio calculations were performed to assist in the interpretation of the kinetic results. Reaction mechanisms and energetics for the hydration of the AlO2- system were calculated using the HF/6-311+G(d(Al),p), B3LYP/6-31+G(d), B3LYP/6-311+G(2d,p), B3LYP/6-311+G(3d2f,2p), and MP2/6-311+G(2d,p) levels of t...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call