Abstract

The heterobimetallic complex (IPr)Cu-Fp (IPr = N,N′-bis(2,6-diisopropylimidazol-2-ylidene, Fp = FeCp(CO)2) was identified previously as a nonprecious metal catalyst for C–H borylation. To better understand the nature of the bimetallic reaction pathways operative in this system, we have conducted a thorough mechanistic study of alkyl halide activation by the Cu–Fe heterobimetallic reaction center. Use of cyclopropylmethyl halide substrates as radical clocks established that alkyl halide activation occurs by a two-electron mechanism for alkyl bromides and chlorides but not iodides. Eyring analysis of the activation of benzyl chloride allowed for experimental determination of activation parameters, including a large and negative entropy of activation (ΔS⧧ = −36 eu). A Hammett study with para-substituted benzyl chlorides revealed a reaction constant of ρ = 1.6, indicating accumulation of negative charge in the transition state on the alkyl halide carbon. The Ru analogue, (IPr)Cu-Rp (Rp = RuCp(CO)2), was found to react approximately 17–25 times more slowly with selected benzyl chlorides than (IPr)Cu-Fp, indicating that the relative nucleophilicities of the free metal carbonyl anions are predictive of the relative reactivities of their heterobimetallic counterparts. Synthesis and characterization of the new Ag and Au analogues, (IPr)Ag-Fp and (IPr)Au-Fp, are reported along with the observation that these more covalent congeners are significantly less reactive toward alkyl halides. DFT calculations were used to model a transition state for the Cu–Fe reaction, which was identified as stereoinvertive at the alkyl halide carbon. NBO calculations indicate crucial roles played by the CO ligands within the Fp group: they both act as redox noninnocent ligands and also provide structural templating to stabilize the transition state as the metal–metal bond breaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.