Abstract

Alcohols are widely used, and sometimes renewable, reagents but the hydroxyl moiety is a relatively poor leaving group under mild conditions. Direct nucleophilic substitution of alcohols is a desirable reaction for synthetic and process chemists. Synthesis of twelve alkyl and benzyl halides was achieved in [Bmim]PF6 (Bmim = 1-butyl-3-methylimidazolium) from their parent alcohols using ammonium halides as the halogenating agents. Trends in reactivity based on the alcohol and halide were discovered. Mechanistic evidence suggests that the reaction proceeds via SN2 substitution of the hydroxyl group, which is activated via hydrogen-bonding with the acidic proton of the imidazolium cation. Also, for benzyl substrates, equilibria involving formation of dibenzyl ether complicate the reactions and reduce optimum yields. Ammonium halides are useful, solid and relatively safe reagents for the conversion of some primary alcohols to organohalides in ionic liquids (yields up to 81 %). Indanol under the same conditions yields biindenylidene (GC yield 63 %).

Highlights

  • Alcohols are widely used, and sometimes renewable, reagents but the hydroxyl moiety is a relatively poor leaving group under mild conditions

  • Further to our initially reported study [20], we discovered that palladium was not an essential component in the catalytic system for chlorinating benzyl alcohol

  • Further investigation of catalytic chlorodehydroxylation of benzyl alcohol in ionic liquids led to a number of interesting observations

Read more

Summary

Results

Synthesis of twelve alkyl and benzyl halides was achieved in [Bmim]PF6 (Bmim = 1-butyl-3-methylimidazolium) from their parent alcohols using ammonium halides as the halogenating agents. Trends in reactivity based on the alcohol and halide were discovered. Mechanistic evidence suggests that the reaction proceeds via SN2 substitution of the hydroxyl group, which is activated via hydrogen-bonding with the acidic proton of the imidazolium cation. For benzyl substrates, equilibria involving formation of dibenzyl ether complicate the reactions and reduce optimum yields

Conclusions
Background
Results and discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.