Abstract
Wind resistance is one of the most important safety targets for high-rise buildings, especially slab-shaped ones with relatively large length–width ratios. In this study, the characteristics of wind pressure on a reduced-scale model of a slab-shaped high-rise building were analyzed experimentally. The experiment was conducted using the DTC Initium electronic scanning pressure measurement system in the wind tunnel at the Xiamen University of Technology, China. The spatial distribution and time-frequency characteristics of the wind pressure signals were analyzed with various wind flow directions under uniform and boundary-layer inflow conditions. The results show that both of the inflow conditions and the wind directions have significant influences on the magnitude and distribution characteristics of the wind pressure on the building surfaces. The wavelet transform-based analysis shows that the wind pressure on the building surfaces presents obvious intermittent characteristics, with the instantaneous energies pulsating intensively in the time-frequency domain, illustrating the unsteady nature of the wind pressure loads on the building. The influence and risk of the unsteady pulsating pressure loads should be considered when evaluating the wind-resistant performances of this type of building.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have