Abstract
The wake of a wind turbine is the driving phenomenon for energy recovery in a wind farm and for the interaction between wind turbines. The vortical structures of the wake of a horizontal-axis wind-turbine model are investigated in the Open Jet Facility wind-tunnel of Delft University of Technology. Velocity fields are acquired with stereoscopic particle image velocimetry, both unconditionally sampled and phase-locked with the blade motion, allowing for a statistical analysis of the mixing process of the wake, distinguishing between the contribution of the organised periodic motions and the random turbulent fluctuations. The evolution of the wake is measured up to five diameters downstream of the model. The stream-wise development of the wake velocity, pressure and total enthalpy of the flow is determined. Results show that the wake instability caused by the pair-wise interaction of the blade tip-vortices (so called “leapfrogging phenomenon”) has a strong impact on the momentum deficit recovery of the wake, by enhancement of the mixing process downstream of the tip-vortex helix instability, where the contribution of the random fluctuations becomes predominant. The experimental data are made available online together with a complete description of the wind turbine model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.