Abstract

For efficient large-series production and improved process design, a profound understanding of a textile’s forming behavior is crucial to ensure adequate drapability and defect-free components. Woven fabrics have often been the focus of research due to their easier formability, while non-crimp fabrics (NCFs) have been investigated much less despite their higher lightweight potential, resulting in a limited experimental basis for the validation of numerical models. Therefore, forming experiments of a unidirectional and a bidirectional NCF are conducted for different configurations and punch shapes, including hemisphere, tetrahedron, and square box. The macroscopic strains are captured throughout the entire process using digital image correlation (DIC) and comprehensively analyzed in combination with the outer contour and resulting defects. Fundamental differences in the deformation behavior of both textiles are identified. For the balanced Biax-NCF, the tricot stitching couples the deformation of both fiber layers and the fabric mainly deforms under symmetrical shear with limited yarn slippage or defects. For the highly unbalanced UD-NCF, the lack of a second fiber direction results in an asymmetrical deformation behavior. The UD-NCF deforms due to shear parallel to the fiber yarns superimposed with transverse tensile and compressive strains in different deformation modes. The data generated in this study is freely available at https://doi.org/10.5281/zenodo.12516897.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.