Abstract

SUMMARY This paper presents gas emissions from turbulent chemical flow inside a model combustor, for different blending ratios of hydrogen–methane composite fuels. Gas emissions such as CO and O2 from the combustion reaction were obtained using a gas analyzer. NOx emissions were measured with a NOx analyzer. The previously obtained flame temperature distributions were also presented. As the amount of hydrogen in the mixture increases, more hydrogen is involved in the combustion reaction, and more heat is released, and the higher temperature levels are resulted. The results have shown that the combustion efficiency increases and CO emission decreases when the hydrogen content is increased in blending fuel. It is also shown that the hydrogen–methane blending fuels are efficiently used without any important modification in the natural gas burner. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.