Abstract

The travel distances of particles ranging in size from 2.88 mm to 10.63 mm were investigated in laboratory simulations of interrill overland flow. Using travel distances scaled for differences among the experiments in flow and rainfall energy, a relationship between distance traveled and particle size is obtained that shows a steep reduction in travel distance with increase in particle size. Travel distance is the outcome of two probabilities: that of moving and that of coming to rest. In interrill flow, the former is controlled by rainfall energy, but the latter is controlled by flow energy. Analysis of subsets of the data in which only rainfall or flow energy varied shows that the steep reduction in travel distance with particle size is primarily due to sensitivity to flow energy. Although particle movement (entrainment) by rainfall energy does vary with particle size, the sensitivity is less.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.