Abstract

Controlling the quality of a laser clad bead is one of the most important goals for the cladding process. The quality of the bead is predominantly affected by the process parameters, but the travel path operating parameters also influences the resultant geometry and mechanical properties. An experimental approach to investigate the mechanical properties of beads with variable overlap conditions is presented in this paper. This scenario occurs frequently but has not been investigated. Using the direct energy deposition (or laser cladding) process, 420 stainless steel beads are deposited onto mild steel. One-bead, two-bead, and four-bead configurations are evaluated for two different sample lengths. The percent overlap varied between 30 and 47% for the multi-bead samples. The bead geometry, hardness, and distortion results are collected and analysed. The percentage overlap impacts the hardness and the melt pool depth. The number of beads influences both those characteristics as well as the distortion. The sample length influences the distortion. These experiment data sets serve as the foundation for a calibrated finite element model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call