Abstract

The current work presents a process that separates hydrogen from mixtures with natural gas transported in the natural gas grid. The aim is to achieve hydrogen at fuel cell quality (99.97% (v/v) according to ISO 14687-2:2012). Due to gas grid regulations in Austria the hydrogen content is limited to a maximum of 4% (v/v).In a hybrid approach based on membrane separation and pressure swing adsorption (PSA) the supplied high pressure hydrogen – natural gas mixture (up to 120 bar) is pre-enriched by membrane technology and further upgraded to the required quality by PSA. The majority of the feed gas is kept at grid pressure, which ensures a high energetic efficiency. The remaining components, separated by PSA, are re-compressed and returned to the grid.Beside the technological feasibility, the influence of various process parameters (e.g. stage-cut, permeate conditions, PSA hydrogen recovery) is analysed. Based on the results, the required amount of energy of 0.8–1.5 kWh/m3 (fuel-cell quality hydrogen at 25.81 bar(a)) is calculated for the so called HylyPure® process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.