Abstract
This paper presents a homeostatic controller algorithm and its performance, which controls motion of a hybrid-driven underwater glider. The homeostatic controller is inspired from a biological process known as homeostasis, which maintains a stable state in the face of massively dynamics conditions. The objective is to obtain a better control performance of the glider motion control system with a presence of disturbance, which is the water current. The algorithm was simulated by using MatlabTM. According to the simulation results, in order to achieve the desired pitch angle, the homeostatic controller was able to optimize the glider’s ballast mass and distance of the glider’s sliding mass by reducing the ballast mass up to 17.7% and shortening the sliding mass distance up to 53.7% when compared with the linear-quadratic regulator (LQR) and model predictive control (MPC). Furthermore, validation analyses of the homeostatic controller performance between the simulation and experimental results have shown very satisfactory performance.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have