Abstract

PurposeThis paper aims to investigate and explain the dual fracture behaviour of PA12 specimens sintered by selective laser sintering (SLS) as a function of wall thickness and build direction with a powder mixture 30:70. To achieve this objective, research related to chemical, thermal and structural behaviours as a function of the input variables was carried out to describe and explain why ductile-fragile behaviour occurs during fractures under uniaxial tension manufactured via a methodology of material analysis and manufacturing processes.Design/methodology/approachThe factorial design 32 relates the fracture of PA12 tensile specimens to the horizontal, transverse and vertical build directions at 2.0, 2.5 and 3.0 mm thicknesses, respectively. Fractographic images revealed the fracture surfaces and their dual ductile-fragile behaviour related to the specimens’ measured crystalline, thermal, surface and chemical properties.FindingsThe study showed that thermal property variables differ depending on the input variables. The wall thickness variable affected this morphology the most, showing the highest percentage of the ductile area, followed by the transverse and vertical directions. It was determined that the failure in the vertical direction is due to crystalline gradients associated with the layer-by-layer construction process. The pore density may be closely related to generating ductile and brittle areas.Originality/valueIn this paper, fracture characterisation is performed based on the mechanical, chemical, structural, thermal and morphological properties of PA12 manufactured by SLS. In addition, a heatmap of porosities in cross-sections is constructed using a machine learning model (k-means) related to dual fracture behaviour. This research revealed significant differences in the fracture type according to the build direction. In addition, thin-section fractography provides a more detailed explanation of the fragile behaviour of the vertical direction associated with crystalline changes due to the direction of the sintering layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.