Abstract
A broadband absorber based on a tapered, alternating metal–dielectric multilayered structure was realized in the visible and IR range. The structure is fabricated by using a versatile method easily scalable to large areas by taking advantage of the line width reduction that occurs naturally in masked evaporation processes. The multilayered structure can be treated as a hyperbolic metamaterial (HMM), and the tapered structure can be regarded as a HMM waveguide with varying width. Light couples into the tapered structure most strongly at the mode cutoff position in the waveguide due to the hyperbolic dispersion and the phase matching condition. Resonant cavities are formed between the top of the tapered structure and the cutoff level, producing strong absorption peaks. These resonances are closely spaced spectrally due to the high k modes in HMM. Finally a broad absorption band is formed due to the broadening of the resonances from an array of coupled HMM tapered structures.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.