Abstract

Static softening is a crucial mechanism during the hot rolling of steel to relax residual stress and strain, refine microstructure, and improve mechanical properties. In this study, double hit tests with varying temperature, strain rate, interpass time, and pre-strains were performed using a Gleeble machine to investigate static softening behavior. Based on experimental results, a kinetic model of static softening was developed to represent interpass softening behavior during hot rolling. An explicit static softening model was implemented as a subroutine into a three-dimensional finite element model of round bar hot rolling and static softening was simulated. Results show that static softening occurs quickly at the beginning of the interpass time and then slows down. Also, the effects of temperature and rolling speed on static softening were simulated and the results show that temperature has a more significant influence on static softening than rolling speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.