Abstract

ABSTRACT Two-dimensional finite element (FE) compressive stress analyses were carried out on the particle compound material to understand the stress pattern distributions before cracking. FE analysis was followed by discrete element (DE) simulation. A study of the crack propagating mechanism in a particle was represented by a model material that typifies pellets of high-strength pressed agglomerate building materials. For this, concrete spheres of strength category B35 (compressive strength 35 N/mm2) were used. It was observed that the ring tensile stress is responsible for the crack initiation in the spherical particle compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.