Abstract

Dual-bed gasifier is a new gasifier system with separated combustion and gasification zones. The two-zone separation makes it possible to increase calorific value of the producer gas. In order to develop and improve the process operation, understanding of system dynamics and parameters that describe the in-depth hydrodynamics are essential. Computational fluid dynamics is a tool that can be used to explain the complex multiphase system behavior. The considered dual-bed gasifier had 3.00 m height and the maximum width diameters of riser and downcomer were 0.14 and 0.40 m, respectively. Conservation equations of mass, momentum, energy and species for each phase were solved coupling with the kinetic theory of granular flow using ANSYS FLUENT version 12.1. Here, two-dimensional simulation had been successfully determined the flow pattern and chemical reaction corresponding with actual experimental and theoretical data. The calculated results of the solid volume fraction in the riser section showed the bubbling and slugging flow patterns. The product gas composition and gas temperature inside dual-bed gasifer reflected the advantages for this type of reactor over the other conventional gasifiers. The system turbulences were firstly explored in dual-bed system which were normal Reynolds stresses and granular temperatures. For the effect of interphase exchange coefficient model, the pressure-loop using drag force model proposed by Gidaspow was in good agreement with the experiment than the ones proposed by Wen-Yu and Syamlal-O'Brien.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.