Abstract

The hydrodynamics of a fuel reactor in a chemical looping combustion (CLC) system is analyzed by using a multiphase two-dimensional computational fluid dynamics (CFD) model that involves solid–gas interactions and chemical reactions. The study compares the fuel reactors of two CLC systems numerically by using hydrogen with calcium sulfide as an oxygen carrier, and methane with nickel as an oxygen carrier in similar conditions. Kinetic theory of granular flow has been adopted. The model considers the conservation equations of mass, momentum and species, and reaction kinetics of oxygen carriers. The results obtained are in good agreement with the experimental and numerical results available in open literature. The bubble hydrodynamics in both the fuel reactors are analyzed. The salient features of the bubble formation, rise, and burst are more prominent in the hydrogen-fueled reactor as compared to the methane-fueled reactor. The fuel conversion rate is found to be larger for the hydrogen-fueled reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.