Abstract
Thinking of today's web search scenario which is mainly keyword based, leads to the need of effective and meaningful search provided by Semantic Web. Existing search engines are vulnerable to provide relevant answers to users query due to their dependency on simple data available in web pages. On other hand, semantic search engines provide efficient and relevant results as the semantic web manages information with well defined meaning using ontology. A Meta-Search engine is a search tool that forwards users query to several existing search engines and provides combined results by using their own page ranking algorithm. SemanTelli is a meta-semantic search engine that fetches results from different semantic search engines such as Hakia, DuckDuckGo, SenseBot through intelligent agents. This paper proposes enhancement of SemanTelli with improved snippet analysis based page ranking algorithm and support for image and news search.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have