Abstract

Based on the binary time series data of social infection dynamics, we propose a general framework to reconstruct the 2-simplicial complexes with two-body and three-body interactions by combining the maximum likelihood estimation in statistical inference and introducing the expectation maximization. In order to improve the code running efficiency, the whole algorithm adopts vectorization expressions. Through the inference of maximum likelihood estimation, the vectorization expression of the edge existence probability can be obtained, and through the probability matrix, the adjacency matrix of the network can be estimated. The framework has been tested on different types of complex networks. Among them, four kinds of networks achieve high reconstruction effectiveness. Finally, we analyze which type of network is more suitable for this framework, and propose methods to improve the effectiveness of the experimental results. Complex networks are presented in the form of simplicial complexes. In this paper, focusing on the differences in the effectiveness of simplicial complexes reconstruction after the same number of iterations, we innovatively propose that simplex reconstruction based on maximum likelihood estimation is more suitable for small-world networks and three indicators to judge the structural similarity between a network and a small-world network are given. The closer the network structure to the small-world network is, the higher efficiency in a shorter time can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.