Abstract

Machine learning models in practical settings are typically confronted with changes to the distribution of the incoming data. Such changes can severely affect the model performance, leading for example to misclassifications of data. This is particularly apparent in the domain of bionic hand prostheses, where machine learning models promise faster and more intuitive user interfaces, but are hindered by their lack of robustness to everyday disturbances, such as electrode shifts. One way to address changes in the data distribution is transfer learning, that is, to transfer the disturbed data to a space where the original model is applicable again. In this contribution, we propose a novel expectation maximization algorithm to learn linear transformations that maximize the likelihood of disturbed data after the transformation. We also show that this approach generalizes to discriminative models, in particular learning vector quantization models. In our evaluation on data from the bionic prostheses domain we demonstrate that our approach can learn a transformation which improves classification accuracy significantly and outperforms all tested baselines, if few data or few classes are available in the target domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.