Abstract
We develop an expectation-maximization algorithm with local adaptivity for image segmentation and classification. The key idea of our approach is to combine global statistics extracted from the Gaussian mixture model or other proper statistical models with local statistics and geometrical information, such as local probability distribution, orientation, and anisotropy. The combined information is used to design an adaptive local classification strategy that improves the robustness of the algorithm and also keeps fine features in the image. The proposed methodology is flexible and can be easily generalized to deal with other inferred information/quantities and statistical methods/models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.