Abstract
Identification of the geological facies and their distribution from seismic and other available geological information is important during the early stage of reservoir development (e.g. decision on initial well locations). Traditionally, this is done by manually inspecting the signatures of the seismic attribute maps, which is very time-consuming. This paper proposes an application of the Expectation-Maximization (EM) algorithm to automatically identify geological facies from seismic data. While the properties within a certain geological facies are relatively homogeneous, the properties between geological facies can be rather different. Assuming that noisy seismic data of a geological facies, which reflect rock properties, can be approximated with a Gaussian distribution, the seismic data of a reservoir composed of several geological facies are samples from a Gaussian mixture model. The mean of each Gaussian model represents the average value of the seismic data within each facies while the variance gives the variation of the seismic data within a facies. The proportions in the Gaussian mixture model represent the relative volumes of different facies in the reservoir. In this setting, the facies classification problem becomes a problem of estimating the parameters defining the Gaussian mixture model. The EM algorithm has long been used to estimate Gaussian mixture model parameters. As the standard EM algorithm does not consider spatial relationship among data, it can generate spatially scattered seismic facies which is physically unrealistic. We improve the standard EM algorithm by adding a spatial constraint to enhance spatial continuity of the estimated geological facies. By applying the EM algorithms to acoustic impedance and Poisson’s ratio data for two synthetic examples, we are able to identify the facies distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.