Abstract

This paper presents an audio classification and retrieval system using wavelets for extracting low-level acoustic features. The author performed multiple-level decomposition using discrete wavelet transform to extract acoustic features from audio recordings at different scales and times. The extracted features are then translated into a compact vector representation. Gaussian mixture models with expectation maximization algorithm are used to build models for audio classes and individual audio examples. The system is evaluated using three audio classification tasks: speech/music, male/female speech, and music genre. They also show how wavelets and Gaussian mixture models are used for class-based audio retrieval in two approaches: indexing using only wavelets versus indexing by Gaussian components. By evaluating the system through 10-fold cross-validation, the author shows the promising capability of wavelets and Gaussian mixture models for audio classification and retrieval. They also compare how parameters including frame size, wavelet level, Gaussian components, and sampling size affect performance in Gaussian models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.