Abstract
An Expectation Maximization algorithm for identification of DNA binding sites is presented. The approach predicts the location of binding regions while allowing variable length spacers within the sites. In addition to predicting the most likely spacer length for a set of DNA fragments, the method identifies individual sites that differ in spacer size. No alignment of DNA sequences is necessary. The method is illustrated by application to 231 Escherichia coli DNA fragments known to contain promoters with variable spacings between their consensus regions. Maximum-likelihood tests of the differences between the spacing classes indicate that the consensus regions of the spacing classes are not distinct. Further tests suggest that several positions within the spacing region may contribute to promoter specificity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have