Abstract

SummaryIn this paper, the parameter identification of bilinear state‐space model (SSM) in the presence of random outliers and time‐varying delays is investigated. Under the basis of the observable canonical form of the bilinear model, the system output can be written as a regressive form, and a bilinear state observer is applied to estimate the unknown states. To eliminate the influence of outliers and time‐varying delays on parameter estimation, we employ the Student's distribution to deal with the measurement noise and use a first‐order Markov chain to model the delays. In the framework of expectation‐maximization (EM) algorithm, the unknown parameters, delays, noise variance, states and transition probability matrix can be estimated iteratively. A numerical simulation and a continuous stirred tank reactor (CSTR) process demonstrate that the proposed algorithm has good immunity against outliers and time‐varying delays and offers good estimation accuracy for the bilinear SSM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call