Abstract

An algorithm is proposed for simultaneous estimation of model parameters, process disturbance intensities, and measurement noise variances for nonlinear dynamic systems that are described by stochastic differential equations. The proposed fully-Laplace approximation expectation maximization (FLAEM) algorithm uses an iterative approach wherein, in the first step, the model parameters are estimated using the approximate maximum likelihood estimation objective function developed by Varziri et al.,1 assuming that disturbance intensities and noise variances are known. In the second step, process disturbance intensities and measurement noise variance estimates are updated using expressions that rely on the fully-Laplace approximation in the expectation maximization algorithm. The proposed FLAEM method is illustrated using a nonlinear two-state continuous stirred tank reactor (CSTR) example. The effectiveness of the FLAEM algorithm is compared with a maximum-likelihood based method proposed by Kristensen et al.2...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.