Abstract
Background: Chronic graft-versus-host disease (cGvHD) is a major cause of morbidity and mortality after Hematopoietic Stem Cell Transplantation (HSCT). Previously, in large patient cohorts, we identified increased numbers of CD56brightPerforin− regulatory-like NK cells (NKreg-like) associated with cGvHD suppression. Thus, we hypothesized that NKreg-like cells may be a potential candidate for cGvHD cell therapy. Aim: To expand NKreg-like cells while maintaining regulatory phenotype and function. Methods: Total NK cells were first expanded with IL-2, which was then combined with rapamycin, Transforming Growth Factor Beta 1 (TGF-β1), NECA (Adenosine A2A receptor (A2AR) agonist), metformin, or dexamethasone, to prevent change in cell phenotype/function. The functional characteristics were evaluated via T cell suppression assays and the phenotype was measured using flow cytometry. The optimal expansion protocol was compared in terms of function and metabolism for three NK expansion media, and cells from cord vs. peripheral blood. Further, expanded NKreg-like cell gene expression was characterized using bulk RNA sequencing. Finally, NKreg-like cells were differentiated from CD34+ hematopoietic stem and progenitor cells (HSPCs) and compared in terms of proliferation and function. Results: The expansion of total NK cells found the addition of TGF-β1 and/or NECA with the pulsing of rapamycin in IL-2 containing media to prevent NKreg-like differentiation (up to 200-fold expansion). Expanded NKreg-like cells maintained a phenotype, transcriptome, and T cell suppression similar to freshly isolated NKreg-like cells. NKreg-like expansion was greatest in the Immunocult media (up to 300-fold), and NKreg-like cells from peripheral blood demonstrated significantly greater proliferation than cells isolated from cord blood (65-fold). The metabolic profile of NKreg-like and cytolytic NK cells appeared similar at baseline, though rapamycin induced a shift to oxidative over glycolytic metabolism. Further, we demonstrated that suppressive NKreg-like cells may alternatively be expanded from CD34+ cells isolated from cord blood, reaching an average 340-fold expansion. Conclusions: In conclusion, our studies have optimized two alternative expansion approaches for deriving functional NKreg-like cells. Additionally, evaluating the transcriptomic and metabolic characteristics provides useful information regarding NKreg-like cell function and differentiation. With further optimization and in vivo validation, we may work towards preparing these cells as a therapy for cGvHD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.