Abstract

We expand the applicability of a modified Gauss–Newton method recently presented in George (2013) [19] for approximate solution of a nonlinear ill-posed operator equation between two Hilbert spaces. We use a center-type Lipschitz condition in our convergence analysis instead of a Lipschitz-type condition used in earlier studies such as George (2013, 2010) [19,18]. This way a tighter convergence analysis is obtained and under less computational cost, since the more precise and easier to compute center-Lipschitz instead of the Lipschitz constant is used in the convergence analysis. Numerical examples are presented to show that our results apply but earlier ones do not apply to solve equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.