Abstract
Emerging evidence now indicates that the 5-lipoxygenase (5-LO) pathway play a role in the pathogenesis of atherosclerosis and restenosis. The expression of 5-LO by activated macrophages in symptomatic plaques leads to leukotriene B 4 (LTB 4) accumulation and enhanced synthesis and release of matrix metalloproteinases (MMPs) that can promote plaque rupture. However, the role of 5-LO pathway in diabetic vascular disease has not been previously reported. Thus, the present study was designed to analyze the expression of 5-LO in carotid plaques of diabetic patients and to investigate the possible role of 5-LO pathway in the pathogenesis and progression of diabetic atherosclerosis. Atherosclerotic plaques from 60 patients undergoing carotid endarterectomy were divided into non-diabetic and diabetic group. Plaques were analyzed for 5-LO, MMP-2 and MMP-9 by immunohistochemical, Western blot, and densitometric analyses, whereas zymography was used to detect MMP activity. Immunocytochemistry was also used to identify CD68+macrophages, CD3+T-lymphocytes, and HLA-DR+inflammatory cells. LTB 4 were quantified by enzyme-linked immunosorbent assay. 5-LO showed abundant immunoreactivity in human atherosclerotic carotid lesions, and was colocalized with macrophage infiltrates in atherosclerotic intima. 5-LO expression was higher in diabetic compared with non-diabetic plaques and was associated with increased MMP-2 and MMP-9 expression. Follow-up analyze with zymography assay revealed MMP activity was elevated in diabetic compared with non-diabetic plaques. Notably, in contrast to non-diabetic plaques, LTB 4 levels were significantly increased in diabetic plaques by enzyme-linked immunosorbent assay. These results suggest that overexpression of 5-LO and LTB 4 in atherosclerotic plaques possibly promote MMP-induced plaque rupture in diabetes. Hence, anti-LTs may be useful, not only in reducing atherogenesis, but also in the prevention and treatment of acute atherothrombotic events in diabetic patients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have