Abstract
Emerging evidence now indicates that the 5-lipoxygenase (5-LO) pathway play a role in the pathogenesis of atherosclerosis and restenosis. The expression of 5-LO by activated macrophages in symptomatic plaques leads to leukotriene B 4 (LTB 4) accumulation and enhanced synthesis and release of matrix metalloproteinases (MMPs) that can promote plaque rupture. However, the role of 5-LO pathway in diabetic vascular disease has not been previously reported. Thus, the present study was designed to analyze the expression of 5-LO in carotid plaques of diabetic patients and to investigate the possible role of 5-LO pathway in the pathogenesis and progression of diabetic atherosclerosis. Atherosclerotic plaques from 60 patients undergoing carotid endarterectomy were divided into non-diabetic and diabetic group. Plaques were analyzed for 5-LO, MMP-2 and MMP-9 by immunohistochemical, Western blot, and densitometric analyses, whereas zymography was used to detect MMP activity. Immunocytochemistry was also used to identify CD68+macrophages, CD3+T-lymphocytes, and HLA-DR+inflammatory cells. LTB 4 were quantified by enzyme-linked immunosorbent assay. 5-LO showed abundant immunoreactivity in human atherosclerotic carotid lesions, and was colocalized with macrophage infiltrates in atherosclerotic intima. 5-LO expression was higher in diabetic compared with non-diabetic plaques and was associated with increased MMP-2 and MMP-9 expression. Follow-up analyze with zymography assay revealed MMP activity was elevated in diabetic compared with non-diabetic plaques. Notably, in contrast to non-diabetic plaques, LTB 4 levels were significantly increased in diabetic plaques by enzyme-linked immunosorbent assay. These results suggest that overexpression of 5-LO and LTB 4 in atherosclerotic plaques possibly promote MMP-induced plaque rupture in diabetes. Hence, anti-LTs may be useful, not only in reducing atherogenesis, but also in the prevention and treatment of acute atherothrombotic events in diabetic patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.